一、svm全称?
SVM 的全称是 Support Vector Machine,即支持向量机,主要用于解决模式识别领域中的数据分类问题,属于有监督学习算法的一种。
支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。
二、svm什么意思?
SVM是由模式识别中广义肖像算法(generalized portrait algorithm)发展而来的分类器,其早期工作来自前苏联学者Vladimir N. Vapnik和Alexander Y. Lerner在1963年发表的研究 。1964年,Vapnik和Alexey Y. Chervonenkis对广义肖像算法进行了进一步讨论并建立了硬边距的线性SVM 。此后在二十世纪70-80年代,随着模式识别中最大边距决策边界的理论研究、基于松弛变量(slack variable)的规划问题求解技术的出现,和VC维(Vapnik-Chervonenkis dimension, VC dimension)的提出[12] ,SVM被逐步理论化并成为统计学习理论的一部分 。1992年,Bernhard E. Boser、Isabelle M. Guyon和Vapnik通过核方法得到了非线性SVM 。1995年,Corinna Cortes和Vapnik提出了软边距的非线性SVM并将其应用于手写字符识别问题,这份研究在发表后得到了关注和引用,为SVM在各领域的应用提供了参考。
三、svm核心技术的发展经历了多少年?
SVM叫做支持向量机( Support Vector Machines)是由Vanpik领导的AT&TBell实验室研究小组 在1963年提出的一种新的非常有潜力的分类技术, SVM是一种基于统计学习理论的模式识别方法,主要应用于模式识别领域.由于当时这些研究尚不十分完善,在解决模式识别问题中往往趋于保守,且数学上比较艰涩,因此这些研究一直没有得到充的重视.直到90年代,一个较完善的理论体系—统计学习理论 ( StatisticalLearningTheory,简称SLT) 的实现和由于神经网络等较新兴的机器学习方法的研究遇到一些重要的困难,比如如何确定网络结构的问题、过学习与欠学习问题、局部极小点问题等,使得SVM迅速发展和完善,在解决小样本 、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,现在已经在许多领域(生物信息学,文本和手写识别等)都取得了成功的应用。 SVM的关键在于核函数,这也是最喜人的地方。低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间。但这个办法带来的困难就是计算复杂度的增加,而核函数正好巧妙地解决了这个问题。也就是说,只要选用适当的核函数,我们就可以得到高维空间的分类函数。
在SVM理论中,采用不同的核函数将导致不同的SVM算法 它是一种以统计学理论为基础的,以结构风险最小化的学习机学习方法,要优于神经网络学习
四、人工智能,机器学习,统计学,数据挖掘之间有什么区别?
相互之间关联在一起,有些应用领域所代表的含义是一样的,这里我想引用台大机器学习课程中老师所讲的这些概念相互之间的区别,具体如下:
ML与DM之间的关系
机器学习是从假设空间H
中寻找假设函数g
近似目标函数f
.数据挖掘是从大量的数据中寻找数据相互之间的特性ML与AI之间的关系
人工智能是一种应用领域,机器学习是实现人工智能的一种手段,但是不限于此。ML与统计之间的关系
统计的方法可以用来机器学习,比如:聚类、贝叶斯等等,当然机器学习还有很多其他的方法,如神经网络(更小范围)、SVM模式识别也是一个应用领域
五、什么是支持向量机(SVM)以及它的用途?
支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面.在分开数据的超平面的两边建有两个互相平行的超平面.分隔超平面使两个平行超平面的距离最大化.假定平行超平面间的距离或差距越大,分类器的总误差越小.它是一种监督式学习的方法,广泛应用于统计分类以及回归分析中.